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Today 

• Image  Restoration 
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Image Enhancement 

• Image enhancement techniques basically are heuristic 

procedures designed to manipulate an image in order to 

take advantage of the psychophysical aspects of the 

human visual system 

• Image enhancement is largely a subjective process 

• Stretching, denoising, smoothing, sharpening, … 
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Image Restoration  

• Image restoration attempts to reconstruct or recover an 

image that has been degraded by using a priori 

knowledge of the degradation phenomenon 

• Image restoration is for the most part an objective 

process 

• Goal of image restoration 

 to improve the quality of an image 
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Image Restoration  

• Image restoration techniques are oriented toward 

modeling the degradation and applying the inverse 

process in order to recover the original image 
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Image Restoration  

• The purpose of image restoration is to "compensate for" 

or "undo" defects which degrade an image. Degradation 

comes in many forms such as motion blur, noise, and 

camera misfocus. In cases like motion blur, it is possible 

to come up with an very good estimate of the actual 

blurring function and "undo" the blur to restore the 

original image. In cases where the image is corrupted by 

noise, the best we may hope to do is to compensate for 

the degradation it caused 
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Model of the Image 

Degradation/Restoration Process 

The degradation process is modeled as a degradation function that, 

together with an additive noise term, operates on an input image f(x, y) to 

produce a degraded image g(x, y) 

The objective of image restoration is to obtain an estimate        of the 

original input image 

 ˆ ,f x y
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Model of the Image 

Degradation/Restoration Process 

• If H is a linear, position-invariant process, then the degraded image 
is given in the spatial domain by 

 

• In the frequency domain 

 

 

       , , , ,g x y h x y f x y x y  

       , , , ,G x y H x y F x y N x y 
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Model of the Image 

Degradation/Restoration Process 
• In the spatial domain  

 

 

• In the frequency domain 
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Noise Models 

• Some important noise probability density functions 
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Noise Models 

• Gaussian noise 
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Noise Models 

• Rayleigh noise 

 

 

 

 

 

• The mean and variance of this density is given by 

 

 

• and 
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Noise Models 

• Erlang(gamma) noise 

 

 

 

 

 

• The mean and variance of this density is given by 

 

 

• and 
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Noise Models 

• Exponential noise 

 

 

 

 

 

• The mean and variance of this density is given by 

 

 

• and 
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Noise Models 

• Uniform noise 

 

 

 

 

 

• The mean and variance of this density is given by 

 

 

• and 
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Noise Models 

• Impulse (salt-and-pepper) noise 

 

 

 

 

 

 

• The salt-and-pepper appearance of the image corrupted by impulse 

is the only one that is visually indicative of the type of noise causing 

the degradation 

 

 

 

 

 

 

 

 
a

b

P for z a

p z P for z b

0 otherwise




 





 http://ivm.sjtu.edu.cn 

Noise Models 
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noise image and their histograms 
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noise image and their histograms 
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Noise Models 

• Periodic noise 

▫ Periodic noise in an image 

arises typically from electrical 

or eletromechanical 

interference during image 

acquisition. This is the only 

type of spatial dependent 

noise that will be considered 

in this chapter 

▫ The DFT of the original image 

shows four conjugate pair of 

peaks indicating the 

frequencies of the periodic 

noise in the original image. 
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Noise Models 

• Estimation of noise parameters 

▫ The parameters of periodic noise typically are estimated by inspection 

of the Fourier spectrum of the image. 

▫ The simplest use of the data from the image strips is for calculating the 

mean and variance of intensity levels. 

▫ We estimate the mean and variance as follows, where S is a  trip, and  

▫          denote the probability estimates(normalized histogram values) of the 

intensities of the pixels in S, L is the number of  possible intensities in the 

▫ entire image.  

 

 s ip z

 
L 1

i s i

i 0

z z p z




    
L 1

22

i S i

i 0

z z p z




 



 http://ivm.sjtu.edu.cn 

Noise Models 

• Estimation of noise parameters 
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Noise Models 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• When the only degradation present in an image is noise, the 

degraded image is given by 

 

 

 and 

 

 

• Spatial filtering is the method of choice in situations when only 

additive random noise is present, which is discussed in detail in 

Chapter 3 

 

 

 

     , , ,g x y f x y x y 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Mean filters 

▫ Arithmetic mean filter 

 

 

 

 

▫ Geometric mean filter 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Mean filters 

▫ Harmonic mean filter 

 

 

 

 

▫ Contra harmonic mean filter                                       
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Restoration in the Presence of Noise Only—

Spatial Filtering 
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Restoration in the Presence of Noise Only—

Spatial Filtering 

Correct 
parameters  Q 
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Restoration in the Presence of Noise Only—

Spatial Filtering 

Wrong parameters  Q 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Order-statistic filters 

▫ Median filter 

 

 

▫ Max and min filters 

 

 

 

 and 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Order-statistic filters 

▫ Midpoint filter 

 

 

 

▫ Alpha-trimmed mean filters 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Order-statistic filters 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Order-statistic filters 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Order-statistic filters 



 http://ivm.sjtu.edu.cn 

Restoration in the Presence of Noise Only—

Spatial Filtering 
• Adaptive filters 

▫ Adaptive, local noise reduction filter 

1. If          is zero, the filter should return simply the value of g(x, y). This 

is the trivial, zero-noise case in which g(x, y) is equal to f(x, y) 

2. If the local variance is high relative to       , the filter should return a 

value close to g(x, y). A high local variance typically is associated with 

edges, and these should be preserved. 

3. If the two variances are equal, we want the filter to return the 

arithmetic mean value of the pixels in Sxy. This condition occurs when 

the local area has the same properties as the overall image, and local 

noise is to be reduced simply by averaging 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Adaptive filters 

▫ Adaptive, local noise reduction filter 

▫ An adaptive expression based on these assumption may be written as 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Adaptive filters 

▫ Adaptive, local noise reduction filter 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Adaptive filters 

▫ Adaptive median filter 

▫ Stage A: 

  A1=zmed - zmin 

  A2=zmed - zmax 

  If A1>0 and A2<0, go to stage B 

  Else increase the window size 

  If window size<=Smax repeat stage A 

▫ Stage B: 

 B1=zxy - zmin 

 B2=zxy - zmax 

 If B1>0 and B2<0, output zxy 

 Else output zmed 
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Restoration in the Presence of Noise Only—

Spatial Filtering 
• Adaptive filters 

▫ Adaptive median filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandreject filters 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandreject filters 

▫ Ideal bandreject filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandreject filters 

▫ Butterworth bandreject filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandreject filters 

▫ Gaussian bandreject filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandreject filters 



 http://ivm.sjtu.edu.cn 

Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandpass filters 

▫ The transfer function HBP(u, v) of a bandpass filter is obtained from a 

corresponding bandreject filter with transfer function HBR(u, v) by 

using the equation 

 

 

▫ Ideal bandpass filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandpass filters 

▫ Butterworth bandpass filter 

 

 

 

 

 

▫ Gaussian bandpass filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Bandpass filters 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 

• A notch filter rejects (or passes) frequencies in predefined 

neighborhoods about a center frequency. 

▫ Ideal notch reject filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 

▫ Butterworth notch reject filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 

▫ Gaussian notch reject filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 

▫ Notch pass filters perform exactly the opposite  function as the notch reject 

filters, their transfer functions are given by 

 

 

 

▫ Ideal notch pass filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 

▫ Butterworth notch pass filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 

▫ Gaussian notch pass filter 
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Periodic Noise Reduction by Frequency 

Domain Filtering 
• Notch filters 
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Optimum Notch Filter 
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Following the derivations given in page 364 of the textbook,it can be shown 
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Example 
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Example 
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Example 
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Inverse Filtering 

• Direct inverse filtering 

▫ An estimate of the transform of the original image is computed by 

dividing the transform of the degraded image by the degradation 

function: 

 

 

▫ Plugging G(u, v) = F(u, v) H(u, v) + N(u, v) into the equation yields: 

 

 

 

▫ Original image can’t be recovered even if we know the degradation function! 
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Inverse Filtering 
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Minimum Mean Square Error (Wiener) 

Filtering 
• Wiener filter 

▫ Both the degradation function and statistical characteristics of noise 

are incorporated into the restoration process. 

▫ Consider images and noise as random variables, the objective is to find 

     an estimate       of the uncorrupted image        that minimizes the mean  

     square error given by:      

 

 

▫ Approximation of the above mean square error involving the original and 

restored images: 
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Minimum Mean Square Error (Wiener) 

Filtering 
• Wiener filter 

▫ Assuming that the noise and the image are uncorrelated; that one or 

the other has zero mean; and that the intensity levels in the estimate 

are a linear function of the mean square error measure: 
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Minimum Mean Square Error (Wiener) 

Filtering 
• Signal-to-noise ratio 

 

 

 

 

In spatial domain, we can define a signal-to-noise ratio considering the restored 

image to be “signal” and the difference between this image and the original to be 

noise:                                                  
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Minimum Mean Square Error (Wiener) 

Filtering 
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Minimum Mean Square Error (Wiener) 

Filtering 
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Constrained Least Squares(Regularized) 

Filtering 

• The definition of 2-D discrete convolution is 

 

 

 

 

• In vector-matrix form, as 
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Constrained Least Squares(Regularized) 

Filtering 

• Matlab program(download from the course’s home page) 

▫ Restoration.m 

▫ Est_noise.m 
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Constrained Least Squares(Regularized) 

Filtering 

• To be meaningful, the restoration must be constrained 
by the parameters of the problem at hand. Thus, what is 
desired is to find the minimum of a criterion function, C, 
defined as 
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Constrained Least Squares(Regularized) 

Filtering 

• The frequency domain solution to this optimization 
problem is given by the expression 

 

 

 

 

• P(u, v)is the Fourier transform of the function 
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Constrained Least Squares(Regularized) 

Filtering 

• Matlab program 

▫ Restoration_ls.m 

 

 

• There are also Wavelet-based Image Restoration, Blind 
Deconvolution, which are outside the scope of the 
present discussion.  
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Image Restoration 

  

 

filter the image, then subsample 
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Image Restoration 

  

 

The degradation process: 
blurring & down sample 
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Image Super-Resolution Reconstruction 

  

 

In many real-world application scenarios such as 

military transmission, medical science, and astronomy, 

high-resolution images or videos are often required 

while only low-quality images or videos are available 

due to the limited bandwidth or storage. Therefore, the 

problem to  reconstruct high-resolution versions from 

the quality degraded sources has attracted many 

attentions. 
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Image Super-Resolution Reconstruction 

  

 

Super-resolution are techniques that enhance the 

resolution of an imaging system. There are mainly two 

ways to generate a super-resolution image: from a 

single low-resolution image, and from multiple low-

resolution images of the same scene. 
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Multiple Low-Resolution Images SR 

• One possible method: Projection on Convex Sets (POCS), or Convex 

Projection 

• The original f is a vector known, a priori, to belong to a linear 

subspace S of a parent Hilbert space H, but all that is available to 

the observer is the orthogonal projection g of f onto another linear 

subspace J (also in H). 

• Given the partial data g, 1) find necessary and sufficient conditions 

for the unique determination of f from g, and 2) find necessary and 

sufficient conditions for the stable linear reconstruction of f from g 

in the face of noise. 

• The answers turn out to be quite simple. 
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Multiple Low-Resolution Images SR 

• 1) f is uniquely determined by g iff S and the orthogonal 

complement of J only have the zero vector in common. 

• 2) The reconstruction problem is stable iff the angle between g and 

the orthogonal complement of f is greater than zero. 

• 3) In the absence of noise, there exists in both cases 1) and 2) an 

effective recursive algorithm for the recovery of f employing only the 

operations of projection onto S and projection onto the orthogonal 

complement of J. 
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Multiple Low-Resolution Images SR 

• The conceptual basis for the algorithm is somewhat similar to that 

for the linear case. The original f is known, a priori, to belong to the 

intersection C0 of m well-defined closed convex sets C1, C2, …, Cm 

 

 

• Given only the (nonlinear) projection operators Pi onto the 

individual Ci's,  i = 1 ,…, m, restore f, preferably by an iterative 

scheme. Thus, the realization of the Pi's is the major synthesis 

problem in an arbitrary Hilbert space setting. 

 

 

 

 

m

0 i

i 1

f C C


 
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Multiple Low-Resolution Images SR 

• Program: multiple low-resolution images of the same sense super-

resolution reconstruction 

▫ ./POCS/pocs.m 

▫ 8 images, 10 iteration 

• Learn more about POCS 

▫ Image Restoration by the Method of Convex Projections: Part 1-Theory, 

D. C. YOULA AND H. WEBB 

▫ Image Restoration by the Method of Convex Projections: Part 2-

Applications and Numerical Results, M. I. SEZAN AND H. STARK 
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The Linear Transforms 

• Special interest - linear transforms (inverse)             

 

 

 

 

 

 

• In square linear transforms,  is an N-by-N & non-

singular. 

 

s
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Matching Pursuit 

• Given d unitary matrices {k,  1kd}, define a 
dictionary  = [1, 2 , … d] [Mallat & Zhang (1993)]. 

• Combined representation per a signal s by 

 

• Non-unique solution  - Solve for maximal sparsity 

 

 

• Hard to solve – a  sub-optimal greedy sequential solver: 
“Matching Pursuit algorithm” . 

s 




s.t.sMin:P
00
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Matching Pursuit 

• Matching pursuit is a type of numerical technique which 

involves finding the "best matching" projections of 

multidimensional data onto an over-complete dictionary D. The 

basic idea is to represent a signal f from Hilbert space H as a 

weighted sum of functions        (called atoms) taken from D: 
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Matching Pursuit 

• Searching over an extremely large dictionary for the best matches is computationally 
unacceptable for practical applications. In 1993 Mallat and Zhang proposed a greedy 
solution that is known from that time as Matching Pursuit. The algorithm iteratively 
generates for any signal f and any dictionary D a sorted list of indexes and scalars 
which are sub-optimal solution to the problem of sparse signal representation: 
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Basis Pursuit 

• Facing the same problem, and the same optimization task [Chen, 

Donoho, Saunders (1995)] 

 

 

 

 

 

 

 

 

• Interesting observation: In many cases it successfully finds the 
sparsest representation. [Optimally sparse representation in general (no 

orthogonal) dictionaries via l1 minimization] 

 

 




stsMinP ..:
00

0 1




s.t.sMin:P
11

Hard to solve – replace the     norm by an    : “Basis Pursuit algorithm”  

   

0l

0l
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Single Image Super-Resolution Reconstruction 

• Methods of single image super-resolution can be broadly classified 

into three families: interpolation-based, reconstruction-based and 

learning-based. 

▫ Interpolation-based methods are based on the assumption of the strong 

correlations between adjacent pixels and most of them are efficient to be 

conducted. 

▫ Reconstruction-based methods introduce the prior knowledge as 

reconstruction constraints when regularizing the super-resolution image. 

▫ Learning-based methods infer the lost high-frequency information using 

a learned co-occurrence prior knowledge. 

• Currently, the learning-based methods have shown their promises 

in super-resolution. 
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Single Image Super-Resolution Reconstruction 

• Jian Sun et al. propose a Bayesian approach to image hallucination. 
Given a generic low resolution image, they hallucinate a high 
resolution image using a set of training images. 
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Image Hallucination with Primal Sketch Priors, Jian Sun 

 

Nearest Neighbor Bicubic 

Backprojection Sun’s Approach 

Input 
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Single Image Super-Resolution Reconstruction 

• Inspired by recent progress in manifold learning research, Wei Fan 
et al. take the assumption that small image patches in the low-
resolution and high-resolution images form manifolds with similar 
local geometry in the corresponding image feature spaces. [Image 

Hallucination Using Neighbor Embedding over Visual Primitive Manifolds] 
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Single Image Super-Resolution Reconstruction 

• Jianchao Yang presents a new approach to single-image super-

resolution, based on sparse signal representation.  [Image Super-Resolution 

via Sparse Representation, IEEE transactions on image processing] [Image Super-Resolution as 

Sparse Representation of Raw Image Patches] 

• By jointly training two dictionaries for the low resolution and high 

resolution image patches, enforce the similarity of sparse 

representations between the low resolution and high resolution 

image patch pair with respect to their own dictionaries. 

• They  seek a sparse representation for each patch of the low-

resolution input, and then use the coefficients of this representation 

to generate the high-resolution output. 
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LLE Method & Yang’s Work 

 

Input 
Bicubic LLE 

Yang's Approach Original Image 
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Proposed Method 

 

Bicubic Interpolation 

Original Image Low-resolution 

Proposed Approach 
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SR in Video Compression 

 

 

H.264 With SR 



 http://ivm.sjtu.edu.cn 

SR in Video Compression 
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SR in Video Compression 
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Requirements of Project Two 

now posted! 
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Thank You! 


