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Image Enhancement

» Image enhancement techniques basically are heuristic
procedures designed to manipulate an image in order to
take advantage of the psychophysical aspects of the
human visual system

» Image enhancement is largely a subjective process
» Stretching, denoising, smoothing, sharpening, ...
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Image Restoration

» Image restoration attempts to reconstruct or recover an
image that has been degraded by using a priori
knowledge of the degradation phenomenon

» Image restoration is for the most part an objective
process

» Goal of image restoration

= to improve the quality of an image
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Image Restoration

» Image restoration techniques are oriented toward
modeling the degradation and applying the inverse
process in order to recover the original image
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Image Restoration

» The purpose of image restoration is to "compensate for"
or "undo" defects which degrade an image. Degradation
comes in many forms such as motion blur, noise, and
camera misfocus. In cases like motion blur, it is possible
to come up with an very good estimate of the actual
blurring function and "undo" the blur to restore the
original image. In cases where the image is corrupted by
noise, the best we may hope to do is to compensate for
the degradation it caused



-C,

IVM http://ivm.sjtu.edu.cn

Image, Video, and Multimedia Communications Laboratory

Model of the Image
Degradation/Restoration Process

FIGURE 5.1

A model of the Degradation 8(x.y) ) ﬂ
image fle.yy=> function R"l}ﬁll‘_j‘rj‘"_'.n . flx.y)
degradation/ H Lter(s)

restoration

Noise

Process.
7(x,y)

RESTORATION ‘

DEGRADATION

The degradation process is modeled as a degradation function that,
together with an additive noise term, operates on an input image f(x, y) to
produce a degraded image g(x, y)

The objective of image restoration is to obtain an estimate f (x,y) of the
original input image
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FIGURE 5.1
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Model of the Image
Degradation/Restoration Process

» In the spatial domain

. aix.v)
N
f("i.h(.&:.j'j g(x.y)

» In the frequency domain

f&-"(ef. V)
F (”LH (1, 1,‘:!_..fD_.,G{:e'_ V)

Our purpose is to recover f(x, y) from the noise image g(x, y),
which is almost the same as to remove noise 7(x, y) from g(x,y)
if we don’t consider the impact of A(x, y).

To remove noise efficiently, it is better to know the noise
model first;

To build a model for an unknown noise image, it is better
to know all the existing and widely used noise models.
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FIGURE 5.2 Some important probability density functions.
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Noise Models

- Rayleigh noise

(2)=- %(z—a)e‘(z‘a)z/b forz>a
0 for z<a

» The mean and variance of this density is given by

z

» and

O —

=a+7b/4

2_b(4—7z)
4
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Noise Models

+ Erlang(gamma) noise

p(z)=1(b-1)!

b,b-1
2 e forz>0
(b-1)!
0 forz<0

» The mean and variance of this density is given by

» and

7=

b

a
)

O':

a.2
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Noise Models

» Uniform noise

—— Ifa<z<hb
p(z)=1b-
0 otherwise

» The mean and variance of this density is given by
a+b

2

o (b-a)’
12

» and
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Noise Models

» Impulse (salt-and-pepper) noise

(P, forz=a

p(z)=+<PR, forz=b
0 otherwise

» The salt-and-pepper appearance of the image corrupted by impulse
is the only one that is visually indicative of the type of noise causing
the degradation
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Noise Models

FIGURE 5.3 Test
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig.5.2.
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Gamma

Rayleigh

Gaussian

allbile

cli e
FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image

in Fig. 5.3
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Exponential

Uniform Salt & Pepper
ghi

Gl

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and
pepper noise to the image in Fig. 5.3
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shows four conjugate pair of
peaks indicating the
frequencies of the periodic
noise in the original image.

L3
Noise Models
L3 Ld Ld a
» Periodic noise b
= Periodic noise in an image FIGURE 5.5
arises typically from electrical f:?“[l‘lg’t‘j; ’
or eletromechanical sinusoidal noise.
interference during image E b) Silpectrur}l
T . s €ach pair o
aCQIIISlthIl..ThlS is the only conjugee
type of spatial dependent impulses
noise that will be considered corresponds to
s . one sine wave).
in this chapter (Original image
The DFT of the original image CNOAUIST; of
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Noise Models

» Estimation of noise parameters

abec
FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the

Rayleigh, and (c) the uniform noisy images in Fig. 5 .4.
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Noise Models

Given the probability density function measured from the
histogram of noise using the test pattern shown above, first the
most-likely noise model 1s chosen (be 1t Gaussian, Rayleigh,
Gamma or exponential) before the noise parameters are estimated.

Then, we can use the image strip, denoted by S, to calculate the
mean and variance of the gray level.
L-1 L-1

z,p, () Z z,—-7) ps(z)
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Restoration in the Presence of Noise Only—
Spatial Filtering

» When the only degradation present in an image is noise, the
degraded image is given by

g(xy)=f(xy)+n(xy)
and
G(u,v)=F(u,v)+N(u,v)

« Spatial filtering is the method of choice in situations when only
additive random noise is present, which is discussed in detail in
Chapter 3
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Restoration in the Presence of Noise Only—
Spatial Filtering

» Mean filters
=  Arithmetic mean filter

= Geometric mean filter

—|‘)

(xy)=

|
(@)
—~~
w
—t
~—

(S,t)eS
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Restoration in the Presence of Noise Only—

Spatial Filtering

» Mean filters
= Harmonic mean filter

f(xy)=

" (>0 : for pepper noise
* 0 <0 for salt noise
* =0 arithmetic mean filter

* () =-1:harmonic mean filter
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FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 % 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)
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FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
3 X 3 contra-
harmonic filter of
order 1.5.

(d) Result of
filtering (b) with
0 = -15.
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Restoration in the Presence of Noise Only—
Spatial Filtering

Wrong parameters Q

- Y555 TRLE
FIGURE 5.9 S L LG ey
Results of select- -&3 3 & ;;3 - Jamiieacyr ey
ing the wrong sign B T J AR

in contraharmonic Rnyre.

filtering. A

(a) Result of 3 R '?*«\

filtering 33@5;‘1 AR TS ’2}
Fig. 5.8(a) with a s o
contraharmonic 06 i ;?*::" :':;;
filter of size 3 X 3 Vi X i 25
and Q0 = —1.5. Iy YU G R ) vy : P
(b) Result of SR e AN
filtering 5.8(b) M S

with Q = 1.5.
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Restoration in the Presence of Noise Only—
Spatial Filtering

» Order-statistic filters
= Median filter

f (x,y)=median{g (s,t)}

(S,t)eSXy

= Max and min filters

f(xy)= max {g(s.1)]

and
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Restoration in the Presence of Noise Only—
Spatial Filtering

» Order-statistic filters
= Midpoint filter

(19)=5| e {a(e) o fo(e0)|

» Alpha-trimmed mean filters

f(xy)=
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FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
Pa = Pb = 0.1
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.
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FIGURE 5.11 i : &4 FESNE
(a) Result of b BB Lelsdsnmiitttini iy
filtering . Ll oE it Al ) | UL
Fig. 5.8(a) with a

makx filter of size

3 X 3.(b) Result

of filtering 5.8(b)

with a min filter

of the same size.
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FIGURE 5.12

(a) Image
corrupted

by additive
uniform noise.
(b) Image
additionally
corrupted by
additive salt-and-
pepper noise.
Image (b) filtered
with a 5 > 5;

(c) arithmetic
mean filter;

(d) geometric
mean filter;

(e) median filter;
trimmed mean
filter with & = 5.
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Restoration in the Presence of Noise Only—
Spatial Filtering
» Adaptive filters
= Adaptive, local noise reduction filter
1. If o, is zero, the filter should return simply the value of g(x, y). This
is the trivial, zero-noise case in which g(x, y) is equal to f(x, y)
2. If the local variance is high relative to © ,, the filter should return a

value close to g(x, y). A high local variance typically is associated with
edges, and these should be preserved.

3. If the two variances are equal, we want the filter to return the
arithmetic mean value of the pixels in S, . This condition occurs when
the local area has the same properties as the overall image, and local
noise is to be reduced simply by averaging
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Restoration in the Presence of Noise Only—
Spatial Filtering

+ Adaptive filters
= Adaptive, local noise reduction filter
= An adaptive expression based on these assumption may be written as

2
O

f(xy)=9(x Y)—G—Z[Q(X, y)—-m_|

L

An adaptive filter can remove Gaussian noise as effective as
arithmetic and geometric mean filter, but with a minor effect of blurring
(low-pass filtering).



q\oio MU{

IVM http://ivm.sjtu.edu.cn

Image, Video, and Multimedia Communications Laboratory

ab
cild

FIGURE 5.13

additive Gaussian
noise of zero
mean and
variance 1000.
(b) Result of
arithmetic mean
filtering.

(c) Result of
geometric mean
filtering.

(d) Result of
adaptive noise
reduction
filtering. All filters
were of size

7 x17.
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FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of
filtering with a 7 X 7 median filter. (c) Result of adaptive median filtering with S, = 7.
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FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.
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Periodic Noise Reduction by Frequency

Domain Filtering

» Bandreject filters
= Jdeal bandreject filter

1, D(u,v)<D, ——
H(u,v)=40, D, —V?\lg D(u,v)<D, +V?V

iy D(u,v)> D, +—
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Periodic Noise Reduction by Frequency

Domain Filtering

- Bandreject filters
= Butterworth bandreject filter

2n
(i IZZ)(u,v)WZ}
D*(u,v)—D;


butterworth_br.gcw
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Frequency

FIGURE 5.16
(a) Image
corrupted by
sinusoidal noise.

(b) Spectrum of (a).
(c) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.

(Original image
courtesy of
NASA.)
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Periodic Noise Reduction by Frequency

Domain Filtering

- Bandpass filters

= The transfer function Hyp(u, v) of a bandpass filter is obtained from a
corresponding bandreject filter with transfer function Hy(u, v) by
using the equation

Hgo (U,v) =1—Hg (u,v)

= Ideal bandpass filter
0, D(u,v)< DO—V?V

H(uv)=11 D, —V?VS D(u,v)< D, +V?V
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Periodic Noise Reduction by Frequency

Domain Filtering

- Bandpass filters
= Butterworth bandpass filter

1

1{; o }

H(u,v)=1-

Gaussian bandpass filter

2| D(u,v)W

_E{ D (u,v)-Dg T
H(uv)=e


gaussian_bp.gcw
butterworth_bp.gcw
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FIGURE 5.17
Noise pattern of
the image in

Fig. 5.16(
obtained by
bandpass filtering,
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Periodic Noise Reduction by Frequency
Domain Filtering
» Notch filters

» A notch filter rejects (or passes) frequencies in predefined
neighborhoods about a center frequency.
Ideal notch reject filter

H (u,v) = 0, D,(u,v)<D,orD,(u,v)<D,
Ol otherwise

h 2 2 |o
- D, (u,v)= (u—%—uoj +(v—%—voj

1
2 275
D, (u,v)= (u—%wo) +(V—2I+VOJ:|
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Periodic Noise Reduction by Frequency

Domain Filtering

» Notch filters
= Butterworth notch reject filter
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a
bc

FIGURE 5.18
Perspective plots
of (a) ideal,

(b) Butterworth
(of order 2), and
(c) Gaussian
notch (reject)
filters.
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Periodic Noise Reduction by Frequency

Domain Filtering

» Notch filters

= Notch pass filters perform exactly the opposite function as the notch reject
filters, their transfer functions are given by

Hye (U,v)=1-H (u,v)

Ideal notch pass filter

H (u,v) = 1, D,(u,v)<D,or D,(u,v)<D;
a0, otherwise
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Periodic Noise Reduction by Frequency

Domain Filtering

» Notch filters
= Butterworth notch pass filter

H(u,v)=1-
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Periodic Noise Reduction by Frequency

Domain Filtering
» Notch filters

ab

C
el
FIGURE 5.19
(a) Satellite image of
Florida and the Gulf of
Mexico showing
horizontal scan lines.
(b) Spectrum. (¢) Notch
pass filter superimposed
on (b). (d) Spatial noise
pattern. (e) Result of
notch reject filtering.
(Original image courtesy
of NOAA.)
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um Notch Filter

The need of an optimum notch filter arises from the fact that clear noise
pattern in the Fourier transformed plane are not common.

Consider the image shown below from a spacecraft, the start like bright
spots in the Fourier transformed plane (on the right) are not all due to only
one type of noises. Instead, it is the combination of several types of noises. In
such a case, previous approaches fail.

ab

FIGURE 5.20

(a) Image of the
Martian terrain
taken by Mariner 6.
(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)
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Let 7(x.y) be the noise pattern, N(u, v) be its Fourier transform, G(u, v) be
the Fourier transform of the noise corrupted image, and a filter H(u, v) is
designed to allow only the noise pattern to pass, that is

N(u,v) = H(u,v)G(u,v) (5.4.11)
Accordingly, the noise pattern 7(x.¥) can be reconstructed from
n(x,y)=F " {H@v)Gu,v)} (5.4.12)

However, in many cases, 7(x.¥) can not be reconstructed exactly. In such
a case, the image f(x.) is to be reconstructed from the weighted noise

£(x,7) = g(x, 1)~ w(x, 1) (x, ) (5.4.13)
, 4
where W(x.7) is a position dependent weighting function to minimize the local
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variance of /(x.v), denotedas @ (x.7),inan neighbor around (x, y) of the
size (2a+1)x(2b+1)

l a

b . 'y
A e PN [f (x+s,y+t)-f (x’-v)] (5.4.14)

?(x,y)— Z Zf X+S5.v+1)

(2a+ l)(2b +1) s5==as="b

= the average value of f (5.7) in the region

54.15
se[-a+x, a+x]andte[-b+y, b+ y] ( )

he textbook,it can be shown

g(x.y)n(x.y)-g(x.»)7(x.»)

w(x,y)=

7 (x.9)-7 (x.7)



FIGURE 5.21

Fourier spectrum
(without shifting)
of the image
shown in Fig.
5.20(a).
(Courtesy of
NASA.)
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\t‘%)b; 1, FIGURE 5.22
: (‘?": .Jf (a) Fourier
spectrum of
N(u, v),and
t, .{,x'x (b) corresponding
&7 noise interference
ﬁ pattern n(x, y).
2.4 -o, -‘_ (Courtesy of
G i NASA.)
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FIGURE 5.23
Processed image.
(Courtesy of

NASA)
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0 the equation yields:

2 know the degradation function!
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FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq.(5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.
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Minimum Mean Square Error (Wiener)
Filtering
» Wiener filter

= Both the degradation function and statistical characteristics of noise
are incorporated into the restoration process.

= Consider images and noise as random variables, the objective is to find
an estimate f of the uncorrupted image / that minimizes the mean
square error given by:

= E(f - f)*
= Approximation of the above mean square error involving the original and
restored images:
1 M—1N-—

=0 y———O
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Minimum Mean Square Error (Wiener)
Filtering

» Wiener filter

= Assuming that the noise and the image are uncorrelated; that one or
the other has zero mean; and that the intensity levels in the estimate
are a linear function of the mean square error measure:
Fu,v) = H*(u,v)S¢(u,v)
St (u, v)|H (u, v)|? + Sp(u, v)
4 H*(u,v)
 [H(u,0)[2 + Sy (u,v)/S)(u, )
o | H (u, v)|
- H(u,v) |H(u,v)|2 + Sy(u, v)/Sr(u,v)

G(u,v)

G(u,v)

G(u,v)

Sy (u,v) = |[N(u,v)|* = power spectrum of the noise

Sr(u,v) = |F(u, v)|? = power spectrum of the undegraded image
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Minimum Mean Square Error (Wiener)
Filtering

- Signal-to-noise ratio
—1N-—-1

Z > F(u,v)?

u=0 v=0
M—-1N-1

>, > [N(u,v)]?

u=0 v=0

SNR =

In spatial domain, we can define a signal-to-noise ratio considering the restored
image to be “signal” and the difference between this image and the original to be
noise:
S A 2

> > fl=y)

u=0 v=0

Z > N, 0)Rlf () ~ f(z,y)]2

u=0 v=0
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abe

FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (c) Wiener filter result.
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FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering.
(c) Result of Wiener hltermor (d) (f) Same sequence, but with noise variance one order of magnitude less.
(g)-(i) Same sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how
the deblurred image is quite visible through a “curtain” of noise.
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Constrained Least Squares(Regularized)
Filtering

» The definition of 2-D discrete convolution is

<
[EEN
=z

-1

f (m,n)h(x—m,y—n)

_of

h(x,y)=f(xy)= v

3
%
Il
o

n

» In vector-matrix form, as

g=Hf+n
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Constrained Least Squares(Regularized)
Filtering

» Matlab program(download from the course’s home page)
= Restoration.m
= Est_noise.m



§ ‘ IVM http://ivm.sjtu.edu.cn

Image, Video, and Multimedia Communications Laboratory

Constrained Least Squares(Regularized)
Filtering

» To be meaningful, the restoration must be constrained
by the parameters of the problem at hand. Thus, what is
desired is to find the minimum of a criterion function, C,
defined as

M -1

C=> > [Vf(xy)]

Xx=0 vy

Z
|_\

Il
o

subject to the constraint

ST
= 7]
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Constrained Least Squares(Regularized)
Filtering

» The frequency domain solution to this optimization
problem is given by the expression

I H* (u,v) )
H )+ 7[P )

F(u,v)= G(u,v)

» P(u, v)is the Fourier transform of the function
0 1 0

p(x,y)=|1 -4 1
0 1 0
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Constrained Least Squares(Regularized)
Filtering

» Matlab program
= Restoration ls.m

» There are also Wavelet-based Image Restoration, Blind
Deconvolution, which are outside the scope of the
present discussion.
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Image Restoration

filter the image, then subsample
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Image Restoration

The degradation process:
blurring & down sample
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Image Super-Resolution Reconstruction

In many real-world application scenarios such as
military transmission, medical science, and astronomy,
high-resolution images or videos are often required
while only low-quality images or videos are available
due to the limited bandwidth or storage. Therefore, the
problem to reconstruct high-resolution versions from
the quality degraded sources has attracted many
attentions.
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Image Super-Resolution Reconstruction

Super-resolution are techniques that enhance the
resolution of an imaging system. There are mainly two
ways to generate a super-resolution image: from a
single low-resolution image, and from multiple low-
resolution images of the same scene.
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Multiple Low-Resolution Images SR

» One possible method: Projection on Convex Sets (POCS), or Convex
Projection

» The original f is a vector known, a priori, to belong to a linear
subspace S of a parent Hilbert space H, but all that is available to
the observer is the orthogonal projection g of f onto another linear
subspace J (also in H).

» Given the partial data g, 1) find necessary and sufficient conditions
for the unique determination of f from g, and 2) find necessary and
sufficient conditions for the stable linear reconstruction of f from g
in the face of noise.

» The answers turn out to be quite simple.
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Multiple Low-Resolution Images SR

» 1) fis uniquely determined by g iff S and the orthogonal
complement of J only have the zero vector in common.

» 2) The reconstruction problem is stable iff the angle between g and
the orthogonal complement of f is greater than zero.

» 3) In the absence of noise, there exists in both cases 1) and 2) an
effective recursive algorithm for the recovery of f employing only the
operations of projection onto S and projection onto the orthogonal
complement of J.
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Multiple Low-Resolution Images SR

» The conceptual basis for the algorithm is somewhat similar to that
for the linear case. The original f is known, a priori, to belong to the
intersection C, of m well-defined closed convex sets C,, C,, ..., C,

f ECO=ﬁCi

» Given only the (nonlinear) projection operators P, onto the
individual C's, 1 =1,..., m, restore f, preferably by an iterative
scheme. Thus, the realization of the Pi's is the major synthesis
problem in an arbitrary Hilbert space setting.
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Multiple Low-Resolution Images SR

» Program: multiple low-resolution images of the same sense super-
resolution reconstruction

./POCS/pocs.m
= 8 iImages, 10 iteration

» Learn more about POCS

= Image Restoration by the Method of Convex Projections: Part 1-Theory,
D. C. YOULA AND H. WEBB

= Image Restoration by the Method of Convex Projections: Part 2-
Applications and Numerical Results, M. I. SEZAN AND H. STARK
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The Linear Transforms

» Special interest - linear transforms (inverse)

Dictionary

» In square linear transforms, ® is an N-by-N & non-
singular.
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Matching Pursuit

» Given d unitary matrices {®,, 1<k<d}, define a
dictionary @ = [D,, D, , ... 4] [Mallat & Zhang (1993)].

» Combined representation per a signal s by
s =0
» Non-unique solution a - Solve for maximal sparsity

» Hard to solve — a sub-optimal greedy sequential solver:
“Matching Pursuit algorithm”
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Matching Pursuit

» Matching pursuit is a type of numerical technique which
involves finding the "best matching" projections of
multidimensional data onto an over-complete dictionary D. The
basic idea is to represent a signal f from Hilbert space H as a
weighted sum of functions ¢-. (called atoms) taken from D:

£(t) = fg (0
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Algorithm Matching Pursuilt
Input: Signal: f1). .
Output: List of coefficients: {{]_n , .g%; ]

Initialization:

R ~ flD):
o 1;

Eepeat
find .g",m. = D with maximum inner product { Hfm g",rh }:

I {an'l g"‘:ﬁn }'.
Rfav1 ~ Rf.n — (i Gry,?

n - ntl;
Until stop condition (for example: ||Rf:||<threshold)
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Basis Pursuit

» Facing the same problem, and the same optimization task [Chen,
Donoho, Saunders (1995)]

P,: Min ||g||O st. s=0«a

Hard to solve — replace the | norm by an - “Basis Pursuit algorithm”

« Interesting observation: In many cases it successfully finds the

sparsest representation. [Optimally sparse representation in general (no
orthogonal) dictionaries via 1, minimization]
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Single Image Super-Resolution Reconstruction

» Methods of single image super-resolution can be broadly classified
into three families: interpolation-based, reconstruction-based and
learning-based.

= Interpolation-based methods are based on the assumption of the strong
correlations between adjacent pixels and most of them are efficient to be
conducted.

= Reconstruction-based methods introduce the prior knowledge as
reconstruction constraints when regularizing the super-resolution image.

= Learning-based methods infer the lost high-frequency information using
a learned co-occurrence prior knowledge.
» Currently, the learning-based methods have shown their promises
in super-resolution.
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Single Image Super-Resolution Reconstruction

«» Jian Sun et al. propose a Bayesian approach to image hallucination.
Given a generic low resolution image, they hallucinate a high
resolution image using a set of training images.

low-resolution low-frequency high-frequency intermediate high-resolution
image image primitive layer result image
I Image .
]L Interpolation —» ]H Hallucination —— [}_’} —{ ]g — Reconstruction ]H

(Section 4) T T

(b1, @I
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Image Hallucination with Primal Sketch Priors, Jian Sun

( Backprojecti;)n ) ( Sun’s Approach )
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Single Image Super-Resolution Reconstruction

« Inspired by recent progress in manifold learning research, Wei Fan
et al. take the assumption that small image patches in the low-
resolution and high-resolution images form manifolds with similar

local geometry in the corresponding image feature spaces. [1mage
Hallucination Using Neighbor Embedding over Visual Primitive Manifolds]

’ . o
f e
Wi
I n

| Local neig| hbon |
- I | embedding |
—‘—H_Re_d al error |
| es Lmat lon |

Training Set

Learning Phase

Synthesis Phase
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Single Image Super-Resolution Reconstruction

» Jianchao Yang presents a new approach to single-image super-
resolution, based on sparse signal representation.

via Sparse Representation, IEEE transactions on image processing | [ Image Super-R

a 1 », 'y . I
Sparse Representation of Raw Image Patches|

» By jointly training two dictionaries for the low resolution and high
resolution image patches, enforce the similarity of sparse
representations between the low resolution and high resolution
image patch pair with respect to their own dictionaries.

« They seek a sparse representation for each patch of the low-
resolution input, and then use the coefficients of this representation
to generate the high-resolution output.
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LLE Method & Yang's Work

Bicubic

Original mae

Yang's Approch
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Proposed Method

Bicubic Interpolatio@
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SR in Video Compression
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